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FUZZY COGNITIVE MAPS FOR HIGH-TECH COMPANIES' RESILIENCE MODELING

Background. Relevance. Modern high-tech companies are dealing with more uncertainty and a range of complex threats,
such as cyberattacks, infrastructure disruptions, and personnel challenges. Building resilience in these businesses is now
essential for the national economy. Objective. This study aims to develop a cognitive model for assessing the resilience of high-
tech companies under complex threats based on fuzzy cognitive maps.

Methods. The fuzzy cognitive map (FCM) method combined with fuzzy DEMATEL was used to determine factor weight
coefficients. An expert survey of 10 top managers was conducted to assess the relationships between factors. The agreement
among experts was assessed using Kendall's coefficient of concordance (W = 0.864, p < 0.01). Impulse modeling was applied to

analyze system dynamics.

Results. The resulting FCM, with weights determined through Fuzzy DEMATEL, identified cyber threats as the most critical
negative factor (-0.32) and physical infrastructure as the most significant positive factor (+0.28) influencing overall company resilience.

Conclusions. The proposed model shows how different factors influence a company'’s resilience and helps managers set clear
priorities. In practice, it can be used to model crisis scenarios and guide better resource allocation to strengthen business resilience.

Keywords: fuzzy cognitive map; fuzzy DEMATEL; enterprise resilience; impulse modeling.

Background

The events of the past decade, including the COVID-19
pandemic and various military conflicts, have highlighted the
vital role of organizational resilience as the ability to adapt to
extreme conditions while maintaining functionality and
competitiveness (Dahmen, 2023). This issue is particularly
acute for Ukrainian businesses, which have operated under
constant security challenges since 2014 and, since 2022,
under martial law (Opatska, Gaji¢, & Kasc¢elan, 2024).

In general, the modern business environment is
characterized by unprecedented turbulence and uncertainty.
High-tech companies, including those in the IT industry,
start-ups, and Research and Development (R&D) firms, face
complex threats that simultaneously affect different aspects
of their operations: cybersecurity, physical infrastructure,
human resources, and financial stability (Duchek, 2020;
Koporcic et al., 2025).

These complex threats rarely happen on their own. They
often interact and make each other worse, which traditional
risk assessment methods have trouble capturing. For
example, a cyberattack can harm information systems and
also disrupt operations, lower staff morale, shake customer
trust, and hurt financial stability. Infrastructure failures can
reveal security gaps and use up funds needed for recovery.
Because these risks are so connected, we need assessment
tools that show how they influence each other, not just treat
them as separate problems. This necessitates cognitive
approaches that account for nonlinear links, feedback loops,
and cascading effects in the "enterprise-environment"
system (Papageorgiou et al., 2020).

The purpose of this study is to develop and validate an
integrated fuzzy cognitive map model for assessing
organizational resilience of high-tech companies operating
under complex threat environments, and to identify critical
resilience factors to inform strategic management decisions.

Literature eview. Fuzzy cognitive maps (FCMs) were
proposed by Bart Kosko in 1986 as an extension of Axelrod's
cognitive maps using fuzzy logic (Kosko, 1986). FCMs are
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directed graphs that model causal relations between system
concepts, with weights in the range [-1, 1], where the sign
indicates direction (positive/negative) and the magnitude
indicates strength (Kosko, 1992).

Applications of FCMs in economics and management
have expanded since the 2000s. Xirogiannis, Glykas and
Staikouras (2010) demonstrated the use of hierarchical
FCMs for strategic planning in banking. Glykas, Xirogiannis,
and Staikouras (2012) extended this to dynamic Key
Performance Indicators modeling. Recent work emphasizes
hybrid  approaches. Poczeta, Papageorgiou and
Gerogiannis (2020) proposed nested FCMs with genetic
algorithms, while Papageorgiou et al. (2020) developed an
aggregation method using ordered weighted averaging
operators for sustainable development planning. Kokkinos
et al. (2018) applied FCMs to assess the socio-economic
impacts of industrial projects. In Ukraine, cognitive modeling
in economics has been developed by scholars at Taras
Shevchenko National University of Kyiv (e.g., Bazhenova, &
Bazhenova, 2016).

Decision Making Trial and Evaluation Laboratory
(DEMATEL) was created in the 1970s to analyze complex
causal systems. Wu and Lee (2007) introduced fuzzy
DEMATEL for managerial competencies, highlighting the
advantages of fuzzy expert processing. Chang, Chang and Wu
(2011) integrated fuzzy DEMATEL with the Analytical Network
Process for supplier selection. Li et al. (2011) adapted it to
identify critical success factors in emergency management.
Zhou, Huang and Zhang (2023) used fuzzy DEMATEL with
Triangular Fuzzy Numbers (TFN) for urban safety.

Organizational resilience has advanced substantially
over the last decade. Duchek (2020) conceptualizes
resilience as a meta-capability that encompasses
anticipation, coping, and adaptation. Zhang, Dou and Wang
(2025) empirically link resilience and sustainability for
Chinese firms. Dahmen (2023) posits resilience as a core
property of enterprise risk management in the face of black
swans. Settembre-Blundo et al. (2021) propose a
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multidimensional risk system that integrates sustainability.
Opatska, Gaji¢ and Kascelan (2024) provide wartime
crisis-management insights from Ukraine.

Building on these methodological foundations, the
following section describes our integrated approach
combining FCM construction, fuzzy DEMATEL weighting,
and impulse simulation.

Methods

Fuzzy Cognitive Map Construction. An FCM is formally
described as a pair <K, W>, where K = {K;, K;, ..., K;} is a
set of concepts (factors), W = ||wij|| is a matrix of connection
weights between them. The weight wj € [-1; 1]
characterizes the strength and direction of influence of
concept Kj on concept Ki:

e wij > 0 — positive influence (increase in Kj causes
growth in Ki);

e wij < 0 — negative influence (increase in Kj leads to
decrease in Ki);

e wij = 0 — absence of direct connection.

Model Factor Determination. Factor selection is based
on the following research:

1. Theoretical analysis — literature review (Duchek,
2020; Koporcic et al., 2025; Opatska, Gaji¢, & Kaséelan,
2024) on organizational resilience revealed the 5 most
frequently mentioned factors;

2. Preliminary pilot study — interviews with 10 top
managers of Ukrainian high-tech companies confirmed the
relevance of these factors.

Based on literature analysis and preliminary expert
interviews, 5 key factors were identified:

1. Cyber threats (K;) — integral indicator of cybernetic
and information threats.

2. Physical infrastructure (K,) — state of material and
technical base, energy supply.

3. Financial resources (K3) — financial stability, liquidity,
access to capital.

4. Human capital (K;) — availability of qualified
personnel, team competencies.

5. Managerial flexibility (Ks) — management adaptability,
decision-making speed.

The resulting concept — Company Resilience (R) —is an
integral resilience indicator.

Fuzzy DEMATEL Method. To construct a meaningful
FCM, it is necessary to determine the weight of the causal
links between factors. While these can be estimated directly
by experts, such an approach may fail to capture the deeper
structure of the system. To address this, this study employs
the Fuzzy Decision-Making Trial and Evaluation Laboratory
(DEMATEL) method. This research method serves two main
purposes. First, it provides a structured process for
aggregating the subjective judgments of multiple experts. By
using fuzzy logic, and specifically Triangular Fuzzy Numbers
(TFNs), the model can handle the uncertainty and
vagueness in human linguistic assessments, offering a more
robust analysis than methods relying on crisp numerical
inputs. Second, DEMATEL measures how much each factor
affects the system and how much it is affected by others. By
comparing these results, it sorts factors into two important
groups: 'cause' factors, which drive changes in the system,
and 'effect' factors, which are shaped by other variables. (Li
et al., 2011; Chang, Chang, & Wu, 2011):

Stage 1. Expert evaluation in linguistic form with
conversion to triangular fuzzy numbers (TFN) (Table 1).

TFN Parameters Explanation. Each linguistic term is
converted to a triangular fuzzy number (TFN) represented
as (I, m, u), where:
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o | (left) — the lower bound representing the minimum
possible value;

e m (middle) — the most likely value or peak of the
membership function;

e u (upper) — the upper bound representing the
maximum possible value.

For example, "Strong influence" = (0.5, 0.75, 1.0) means:

e The influence is at least 0.5 (minimum certainty);

e Most likely 0.75 (highest confidence);

e At most 1.0 (maximum possibility).

Table 1
Linguistic term values
Linguistic term TEN (I, m, u)
No influence (0.0; 0.0; 0.25)
Weak influence (0.0; 0.25; 0.5)
Medium influence (0.25; 0.5; 0.75)
Strong influence (0.5; 0.75; 1.0)
Very strong influence (0.75; 1.0; 1.0)

Source: adapted from Li et al. (2011) and Zhou, Huang and
Zhang (2023).

This triangular representation captures both the expert's
assessment and the inherent uncertainty in their judgment,
allowing for more subtle modeling than crisp values.

Stage 2. Aggregation of expert assessments:

%= (1/k) ® (x; ® %7, ... D %)
Stage 3. Defuzzification using the center of gravity
method:
xj=0+m+u)/3
Stage 4. Normalization of the direct influence matrix:
N = X /max(Z;|x;])
Stage 5. Calculation of total influence matrix:
T =N - N)t

Stage 6. Determination of centrality indicators:

e Di = Zjtj (sum of outgoing influences)

e Ri = Zitj (sum of incoming influences)

e (D - R) > 0 - cause factor

e (D - R) <0 - effect factor

Impulse Modeling. While the FCM connection matrix
provides a static map of the system's structure, the true
value of the model lies in its ability to simulate dynamic
behavior. Impulse modeling is the primary technique for
conducting such dynamic analysis with FCMs. It allows
researchers and managers to perform "what-if" scenario
planning by simulating how a change to one or more factors
propagates throughout the entire system over time. So the
impulse method was used to analyze system dynamics
(Kosko, 1993):

Ki(t+1) = f(2;w - Ki(t) + 4K;)
where f is the activation function (sigmoid), AK; is the
impulse in concept i.

Transitive closure matrix:

M=E+W+ W?*+...+Wm

where m is the number of iterations until stabilization.

Threshold Reduction. To improve interpretability,
B-reduction was applied: connections with |tij| < 8 are removed.
The threshold value 6 = 0.10 was used for the study.

Expert Survey Procedure. Ten experts were carefully
selected based on specific criteria, ensuring relevant
expertise: minimum 5 years of senior management
experience in Ukrainian high-tech companies (IT services,
software development, or R&D firms); direct responsibility
for crisis management or business continuity during the
2014-2024 period; and company headcount exceeding 50
employees to ensure organizational complexity. The final
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expert panel comprised 2 CEOs, 1 Chief Operating Officer,
1 Chief Information Security Officer, 2 Chief Technology
Officers, 3 Senior Delivery Managers, and 1 crisis
management consultant.

The assessment utilized a structured questionnaire with
two components. Part A requested pairwise comparison of
all five factors' mutual influences using the linguistic scale
shown in Table 1 (No influence, Weak influence, Medium
influence, Strong influence, Very strong influence). Experts
evaluated 25 factor pairs (5x5 matrix), assessing "How
strongly does factor X influence factor Y?" for each pair. Part
B requested a ranking of the five factors by their overall
importance for organizational resilience.

Data collection followed a modified three-round Delphi
protocol to achieve consensus. Round Ne1 involved individual
expert assessments. Round Ne2 presented aggregated Round
Ne1 results to experts with outliers highlighted, allowing
reassessment. Round Ne3 achieved consensus with a
coefficient of concordance W = 0.864 (p < 0.01), exceeding the
0.70 threshold for acceptable agreement.

Expert Assessment Consistency Verification. The
consistency of assessments from 10 experts was verified
using Kendall's coefficient of concordance. Experts ranked
5 factors by their impact strength on company resilience.

Calculation of concordance coefficient:
125

m2(n3-n)’
where m = 10 (number of experts); n = 5 (humber of factors);
S = 864 (sum of squared deviations of ranks from the mean)

12+864
= T02s) 0.864.

The high level of concordance (86.4%) confirms the
reliability of expert assessments and consensus regarding
the dominant role of cyber threats (K;) as the most critical
factor affecting high-tech company resilience.

Results

The analysis of expert assessments using the Fuzzy
DEMATEL method produced a weighted fuzzy cognitive
map of the high-tech company resilience system. The final
normalized weight coefficients, which quantify the direct
influence of each of the five key factors on the integral
concept of "Company resilience" (R), are presented in Table
2. Most notably, Cyber threats (K1) emerged as the most
critical factor, exerting a strong negative influence with a
weight of —0.32. This indicates that an increase in the level
of cyber threats directly and significantly degrades a
company's overall resilience.

On the other hand, Physical infrastructure (K2) and
Financial resources (K3) were the top positive contributors,
with influence weights of +0.28 and +0.24. This shows that
having strong physical assets and stable finances is
essential for a company to handle disruptions. Human
capital (K4) and Managerial flexibility (K5) also have positive
effects, but their influence is smaller, at +0.20 and +0.16.

Weight Coefficient Matrix. After processing expert
assessments using fuzzy DEMATEL, a normalized influence
matrix was obtained (Table 2):

Table 2

Normalized weight coefficients of factor influence on resilience

Factor Weight coefficient Impact type Rank
Cyber threats (K;) -0.32 negative 1
Physical infrastructure (K) +0.28 positive 2
Financial resources (K5) +0.24 positive 3
Human capital (K,) +0.20 positive 4
Managerial flexibility (Ks) +0.16 positive 5

Note: X|wi| = 1.20 after normalization. The largest factor contribution is 0.32, and all factors together give 1.20 units of influence.
Source: authors' calculations based on expert survey data (n=10 experts).

Factor Classification. To better understand how different
factors influence each other in this system, we used the total
influence matrix from the DEMATEL analysis to calculate
centrality indicators for each factor, as shown in Table 3.
This approach helps us sort the factors into net 'causes'
(drivers) or net 'effects' (outcomes). The findings show a
clear pattern. Cyber threats (K1) stands out as the main
driving factor, with the highest positive (D — R) value of
+1.60. Physical infrastructure (K2) and Financial resources
(K3) also act as cause factors, with (D — R) values of +0.34
and +0.33. These results suggest that both external threats
and internal resources are the key drivers shaping the
company's resilience.

Table 3
Factor centrality indicators
Factor D R D-R D+R Type
Ky 245 0.85 +1.60 3.30 Cause
K, 212 1.78 +0.34 3.90 Cause
Ks 1.98 1.65 +0.33 3.63 Cause
Ky 1.23 2.34 -1.11 3.57 Effect
Ks 1.15 2.31 -1.16 3.46 Effect

Source: authors' calculations using the total influence matrix.

In contrast, Human capital (K4) and Managerial flexibility
(K5) were identified as strong effect factors, with negative
(D - R) values of —1.11 and -1.16, respectively. This
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suggests that while these capabilities support resilience,
they mostly result from the company's resources and the
challenges it faces.

Impulse Modeling Results. To better understand the
dynamic behavior of this structured system, a series of
impulse modeling experiments was conducted to simulate
the impact of various shocks and interventions on overall
resilience. A series of experiments with impulses AKi = £0.2
was conducted for each factor, and the results are
summarized in Table 4. The simulations show that Cyber
threats have the strongest impact. Scenario S1 shows that
an isolated 20% increase in the intensity of cyber threats
leads to a significant 15.6% decline in overall resilience. In
contrast, Scenario S4 shows that reducing these threats
increases resilience by 14.8%. Strengthening infrastructure
(S2) and Finances (S3) also helps, raising resilience by
14.2% and 11.8%.

Scenario S5 was created to explore whether combining
several management actions could have a stronger effect. It
includes three steps: reducing Cyber threat exposure by
AK; =-0.1 through enhanced security measures, improving
Infrastructure by AK, = +0.1 with more diversification and
backup systems, and strengthening Finances by AK; = +0.1
by building reserves. Each action uses a magnitude of 0.1,
which is half the size used in single-factor scenarios, to
reflect realistic improvements that managers can achieve
together with typical resources. These three factors were
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selected because they represent the three highest-
magnitude causal drivers (D-R > 0) that management can

directly influence, making them the logical focus for an
integrated resilience strategy.

Table 4

Impact of impulses on integral resilience

Scenario Impulse AR Interpretation
S1 AK; =+0.2 —0.156 Increased cyberattacks reduce resilience by 15.6%
S2 AK, =+0.2 +0.142 Infrastructure improvement increases resilience by 14.2%
S3 AK; =+0.2 +0.118 Financial resource growth increases resilience by 11.8%
S4 AK; =-0.2 +0.148 Reduced cyber threats increase resilience by 14.8%
S5 Combined* +0.245 Comprehensive improvement increases resilience by 24.5%

*Combined scenario: AK; =—0.1, AK,; = +0.1, AK; = +0.1.
Source: Authors' impulse modeling simulations.

Sensitivity Analysis. The sensitivity analysis further
reinforced the dominant role of Cyber threats (K1).
Variations of +10% in its connection weight resulted in an
18-22% change in the resilience outcome (AR) in relevant
scenarios, confirming it as the most sensitive and critical
parameter in the model.

Discussion and conclusions

The obtained results confirm the critical role of
cybersecurity in enhancing the resilience of high-tech
companies under current conditions. The dominance of the
"Cyber threats" factor (lw| = 0.32) aligns with data from
Opatska, Gaji¢ and Kaséelan (2024), which indicates that
78% of Ukrainian IT companies consider cyberattacks the
greatest threat during martial law.

The identification of "Human capital" and "Managerial
flexibility" as effect factors (D — R < Q) corresponds to
Duchek's (2020) theoretical model, according to which
adaptive capabilities are formed under the influence of the
enterprise's resource base.

The multiplicative effect of cyber threats, revealed through
impulse modeling, confirms the need for a systematic approach
to ensuring resilience, as described in works by Dahmen (2023)
and Settembre-Blundo et al. (2021).

A comparison with classical risk assessment approaches
highlights several advantages of using fuzzy cognitive maps:

1. Accounting for nonlinear relationships and feedback
loops.

2. Ability to work with qualitative expert assessments.

3. Dynamic scenario modeling.

This research has several limitations that future work
should address. First, the expert sample size (n=10)
represents a constraint, though the high concordance
coefficient (W = 0.864) suggests this sample achieved
reliable consensus. Future research could expand to 20-30
experts across multiple countries to test model
generalizability beyond the Ukrainian context.

Second, focusing only on the IT sector means the
findings may not apply to other industries. Companies in
manufacturing, logistics, or financial services have different
risks and resources. A promising approach would be
hierarchical fuzzy cognitive maps (Xirogiannis, Glykas &
Staikouras, 2010) with sector-specific sub-models nested
within a general resilience framework.

Third, the model uses fixed weight coefficients, but real-
world relationships between factors can change over time.
To improve this, future research should collect data over
longer periods and regularly update expert assessments.
Adaptive algorithms could then adjust the weights as new
data arrives. Machine learning methods, such as recurrent
neural networks, could help the model learn how these
weights change during different crises.

Finally, the model has not yet been tested with large-scale
quantitative data. Future research should collect objective
resilience metrics (system downtime, financial impact,
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recovery time) from 50+ companies over multiple crisis events
to validate model predictions against actual outcomes.

The results directly address the study's main goal. An
integrated FCM model for assessing resilience was
developed and validated, key factors were identified using
quantitative analysis, and practical management strategies
were outlined. The model also uncovered patterns that are
not immediately obvious. For example, when interventions
were combined, the improvement was 24.5%, which is
greater than what would be expected if the effects were
simply added together. This shows the model's value goes
beyond just identifying important factors.

Key Scientific Results:

1. Adapted fuzzy DEMATEL methodology for
determining FCM weight coefficients in the context of
organizational resilience.

2. Empirically confirmed the dominant role of cyber
threats (-0.32) in forming high-tech company vulnerability.

3. Revealed the structure of cause-and-effect
relationships: infrastructure and resource factors act as
drivers, while organizational capabilities are results.

Practical Implications:

The model can be used for:

e prioritizing investments in resilience enhancement;

e scenario planning of anti-crisis measures;

e optimizing resource allocation between protection
areas;

e real-time resilience dynamics monitoring.

Management Recommendations:

1. Cybersecurity — priority #1: investments in Security
Operations Center (SOC), critical systems backup,
personnel training.

2. Infrastructure independence: autonomous energy
sources, communication channel duplication.

3. Financial cushion: 3—6 months operational expense
reserves.

4. Personnel policy: retention programs, cross-
functional training.
5. Agile management: decision decentralization,

scenario planning.

Further Research Directions:

e model expansion with additional factors (reputation,
ecosystem connections);

e dynamic adaptation of weight coefficients based on
machine learning;

e validation on empirical data from various industries;

e integration with business analytics systems for real-
time monitoring.

This research offers a key step forward by turning proactive
resilience management into a practical process using predictive
scenario modeling. Traditional resilience methods are mostly
reactive; organizations deal with crises after they happen and
learn from those tough experiences. The fuzzy cognitive map
framework introduced here helps organizations prepare in
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advance by measuring possible future outcomes before they
occur. Managers can test different strategies, such as investing
in cybersecurity, upgrading infrastructure, or setting financial
reserves, to see how these choices might improve resilience.
This approach supports resource decisions based on evidence
rather than intuition.

For Ukrainian businesses operating under permanent crisis
conditions, and for more organizations around the world facing
growing challenges, moving from reactive to proactive
resilience management is not just helpful - it is existential. The
model provides a practical tool for the transition, bridging
academic theory and operational practice.
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curation, formal analysis, writing — review & editing.
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HEYITKI KOFHITUBHI KAPTU CTIMKOCTI BACOKOTEXHONOMNMYHUX KOMIMAHIA

BcTyn. AxkmyanbHicmb. CyyacHi eucokomexHOsI02i4Hi KOMMaHii cmukalombcsi 3i 3pocmaro4or0 HeeUu3HayeHiCmio ma KOMIUIIEKCHUMU
3azpo3amu, makumu sIKk Kibepamaku, pyliHyeaHHs1 iHppacmpykmypu ma kadpoei euknuku. 3abe3neyeHHs1 cmilikocmi 3a3HavyeHUx nionpuemcme
cmae Kpumu4yHoO 8a)KJiueuM 3ae0aHHSIM Onsl HayioHanbHOi ekoHoMiku. Mema cmammi — po3pobumu Ko2HimueHy Modesib OyiHIO8aHHs1 cmilikocmi
8UCOKOMEXHOJI02i4YHUX KOMMaHili 8 yMo8ax KOMIJIEKCHUX 3a2p03 Ha OCHO8I He4imKux KO2HimueHuUX Kapm.

Me To aun. BukopucmaHo memod Heyimkux koeHimueHux kapm (HKK) y noednaHHi 3 fuzzy DEMATEL Onsi susHa4yeHHs1 a2o8ux KoegiyieHmie
gpakmopie. lfpoeedeHo ekcriepmue onumyeaHHsi 10 monmeHeoxepie Osisl oyiHr8aHHS 83a€MO38 'AI3Kie M ghakmopamu. Y3200)KeHicmb eKcriepmHux
OUiHOK nepesipeHo 3a donomozoto KoegiyieHma koHkopdauyii Kendana (W = 0,864, p < 0,01). 3acmocoeaHo iMnynbcHe ModentoeaHHs1 Onsl aHanisy
OuHaMiku cucmemu.

Pe3ynbTatu. OmpumaHa Heyimka kKosHimueHa kapma (FCM), i3 eazamu, eusHayeHumu 3a Memodom Fuzzy DEMATEL, eusieuna
Kibep3a2po3u siKk HalKpumuyHiwul HezamusHul ¢ghakmop (-0.32), a pi3u4Hy iHghpacmpykmypy — K Knroyosuli nosumusHull gpakmop (+0.28), wjo
ensiueae Ha 3az2asibHy cmilKicmb KOMMaHii.

BucHoBku. 3anponoHogaHa modenb deMoHCcMpye, siK Pi3Hi ¢hakmopu ennuearoms Ha cmilikicmb KoMnaHii, ma dornomazae MeHedxepam
eusHayumu 4qimki npiopumemu. Ha npakmuui mModesib Moxe eukopucmosyeamucsi Onisi Modesir08aHHsI Kpu308UX cuyeHapiie ma onmumizayii
po3nodiny pecypcie 0nsi nidsuwieHHs1 pe3unbLeHmMHocmi 6i3Hecy.

Knio4yoBi cnoBa: Heyimka koeHimueHa kapma, Hedimkuii DEMATEL, cmilikicmb nidnpuemcmea, iMmnynbscHe MOOesIHo8aHHSI.
ABTOpM 3a8BNSAIOTb NPO BiACYTHICTb KOHAMIKTY iHTepeciB. CnoHcopy He 6panu yyacTi B po3pobneHHi AoCnimKeHHs; y 36opi, aHanisi un
iHTepnpeTaLii AaHVX; y HaNUCaHHi pyKonucy; B pilleHHi Npo nybrnikavilo pe3ynbTaris.
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