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MATHEMATICAL MODELING OF INFLATION PROCESSES 

IN THE ECONOMY USING DIFFERENTIAL EQUATIONS WITH FRACTIONAL DERIVATIVES  
 

B a c k g r o u n d .  When studying rapidly changing inflationary processes in economics, theoretical methods based on 
ordinary differential equations or partial differential equations are often used. However, as demonstrated in this paper, in certain 
cases it is more appropriate to use the apparatus of differential equations with fractional derivatives. This is due to the presence 
of various types of nonlinearities in functional relationships within inflationary processes, the influence of parameter values from 
previous time points on current values, the existence of scaling relations, and so on. In fact, all these characteristics are inherent 
to fractional calculus. 

M e t h o d s .  The article is devoted to the application of differential equations with fractional derivatives of Caputo for the 
analysis of inflationary (deflationary) processes in the economy, based on the method of measuring inflation using the consumer 
price index, which takes into account changes in prices for a certain set of goods and services. This is demonstrated by changes 
in the specified index over finite time periods. 

R e s u l t s .  It is shown that the use of fractional order differential equations can be useful for building flexible tools for forecasting 
inflation/deflation processes. The relationship between the inflation rate and the unemployment rate is also investigated. 

C o n c l u s i o n s .  It has been established that the change in the fractional derivative index in theoretical models of economic 
processes allows describing different regimes of price dynamics – from moderate inflation to galloping and hyperinflation, as well 
as complex deflationary scenarios. The appearance of negative values of price indices for individual goods can be interpreted as 
a consequence of their excess production, which leads to a loss of market value. The proposed method of using differential 
equations with fractional values of the order of derivatives provides an expansion of the possibilities of modeling a wide range of 
economic processes. 

 
K e y w o r d s :  inflationary (deflationary) processes in the economy, price index, rate of price change, unemployment rate, 

Caputo's fractional derivatives, and differential equations with these derivatives. 
 
Background 
In the modern economic environment, one of the key 

problems is inflation (Bossone, 2019; Dinh, 2020; Conrad, 
2022; Lester, 2023; Afrouzi, 2024; Dibyendu, & Chandra, 
2025; Ferraris, 2025). This phenomenon reflects the growth 
of the general level of prices for goods and services, which 
has a significant impact on the stability of financial systems 
and the socio-economic development of countries as a 
whole. The growth of prices and its consequences, such as 
the decline in the standard of living of the population and the 
deterioration of the macroeconomic situation, become the 
object of in-depth analysis and the search for optimal 
management strategies. 

Researchers and practitioners draw attention to the 
importance of developing new methods and analytical tools 
for analyzing and forecasting inflationary phenomena. The 
relationship between inflation (deflation) and 
unemployment, and other economic indicators, is becoming 
a relevant task for economic science and practice. 

The paper aims to achieve a more realistic and adaptive 
modeling of various types of inflationary processes using 
differential equations with fractional Caputo derivatives. 

Literature review. The complex processes of inflation 
require the construction of various mathematical models for 
a deeper understanding. These models make it possible to 

predict such processes and to influence them through their 
interconnections with various economic and political 
decisions. For instance, in (Moza, Brandibur, & Găină, 
2023), the relationship between interest rates, investment 
demand, and the inflation rate is studied using a four-
dimensional model that describes these interactions by 
applying a control law to the interest rate. In (Ifeacho, & 
González-Parra, 2025), a mathematical model is proposed 
based on a system of first-order nonlinear differential 
equations, developed to study the impact of corruption, 
unemployment, and inflation on economic growth (it also 
considers numerical simulations where periodic solutions 
arise due to Hopf bifurcation). In works (Tsoularis, 2021; 
Navarro, & Tomé, 2022), economic models are also 
analyzed using ordinary differential equations, often 
allowing for single-factor approximations. 

However, when modeling multifactor processes (for 
example, in the Black-Scholes model for option pricing), 
describing the dynamics of economic processes and 
systems (for example, in the analysis of inflationary 
processes in the economy), the possibility of describing 
optimal solutions, etc., partial differential equations provide 
greater flexibility, multidimensionality, and accuracy of 
approaches to mathematical modeling (see Alam, 2020; 
Neumann, 2022; Ashish, 2025; Kubba, & Abdou, 2025). 
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In particular, in recent years, differential equations with 
fractional derivatives have been increasingly used in 
economics (see, for example, (Dąbrowski, Janus, & Mucha, 
2025; Saeidi, Hejazi, & Mohammadi, 2024; Tarasova, & 
Tarasov, 2017; Luo, Wang, & Fečkan, 2018; Ming, Wang, & 
Fečkan, 2019; Tarasov, 2020a, 2020b; Awa, 2020; 
Muhamad et al., 2021; Badi′k, & Fečkan, 2021; Cheow et al., 
2024; Kocapor, Valério, & Radonjić, 2025)). Unlike ordinary 
differential equations and partial differential equations, 
fractional equations allow for modeling processes that take 
memory effects into account (for instance, in financial 
markets, prices are influenced not only by current news but 
also by previous trends and expectations). Fractional 
differential equations provide a smoother transition between 
linear and nonlinear growth, between stability and instability, 
which is important for modeling complex economic systems 
with many interdependent factors. Models with fractional 
derivatives tend to align better with empirical data than those 
based on conventional derivatives. Fractional derivatives 
also account for anomalous diffusion and time delays, which 
are crucial for adapting to economic situations with 
nonstandard dynamics – such as crises or long-term cycles. 
Since the economy encompasses various time scales – 
short-term fluctuations, medium-term cycles, and long-term 
trends – it makes sense to use fractional differential 
equations, as they can simultaneously account for the 
influence of all these scales. It should be noted that the order 
of a fractional derivative can be an arbitrary real number 
(and even an arbitrary complex number or a complex-valued 
function of a complex variable), which provides greater 
flexibility in tailoring models to specific problems. In this 
work, it will be shown that by varying the order of a Caputo-
type fractional derivative, it is possible to describe different 
types of inflation in a unified manner. Finally, fractional 
equations naturally reflect so-called scaling properties, as 
they exhibit a self-similar (fractal) structure. Solutions to 
fractional equations often involve functions of the Mittag-
Leffler type, which are characteristic of power-law 
distributions (for example, income distributions, company 
sizes, and price fluctuations). 

In the works (Luo, Wang, & Fečkan, 2018; Ming, Wang, 
& Fečkan, 2019; Tarasov, 2020a, 2020b; Kocapor, Valério, 
& Radonjić, 2025), when analyzing statistical data on 
economic growth, respectively, in Spain, China, and Serbia, 
it was shown that the use of the fractional Caputo derivative 
leads to better results than when using derivatives of integer 
orders. It is obvious that using differential equations with 
fractional derivatives (in particular, the fractional Caputo 
derivative), it is possible to model inflationary (deflationary) 
processes, which we will briefly recall here. 

Methods 
A brief description of different types of inflation. 

Inflation can be given a fairly concise and extremely 
capacious definition: inflation – an increase in the general 
(average) price level over time (Bossone, 2019; Dinh, 2020; 
Conrad, 2022; Lester, 2023; Afrouzi, 2024; Dibyendu, & 
Chandra, 2025; Ferraris, 2025). 

According to the rate of price growth, there are three 
types of inflation: moderate, galloping, and hyperinflation. 

1) Moderate, or creeping, inflation occurs when prices in 
the country grow by an average of up to 10% per year. This 
type of inflation is considered safe, and when prices 
increase by only a few percent, it is even desirable. A slight 
increase in prices has a stimulating effect on economic 
entities, so to speak, "whips up" their business activity. The 
activation of demand, accordingly, stimulates production. 

2) Galloping inflation occurs when prices increase by 
more than 10% per year (approximately 100 – 200%). This 
type of inflation becomes dangerous because when prices 
jump, people lose their composure, each time expecting 
another price increase. 

3) Hyperinflation (from the Greek hyper – above) – the 
most dangerous type of inflation. During hyperinflation, 
prices grow extremely quickly; they seem to explode, 
reaching astronomical heights, for example, more than 
1000% per year, or 50% per month, or 1% per day. This is 
self-accelerating inflation. 

It should also be noted that with inflationary processes 
of price increases, there is a tendency to decrease prices 
(general or for individual types of goods). This process is 
called deflation. Deflation is caused by a shortage of money 
compared to the production of goods. This leads to a 
decrease in the rate of inflation – disinflation. 

It is important to characterize the dynamics of the 
considered inflationary processes, both in discrete and 
continuous time, using the main quantitative characteristics 
(price indices for various goods, rates of change of these 
prices, the general core inflation index, the general inflation 
rate, etc.), to which we proceed in detail. 

Formulation of the Cauchy problem for the 
consumer price index. One of the main indicators of 
inflation is the consumer price index (CPI), which reflects 
changes in prices for a certain set of goods and services 
(Ferraris, 2025; Vilenskyi, Lyvshits, & Smolyak, 2011). 
Based on this indicator, this article proposes a method for 
studying inflation processes using fractional order 
differential equations. However, before proceeding to the 
direct description of this method, it is demonstrated here 
how it is possible to first obtain an ordinary and fairly simple 
partial differential equation based on the analysis of the price 
index, and then make the transition to a fractional derivative 
differential equation. 

The price index  ,kJ t s  for a good k for the period from 

time s to time t is the ratio of the price  kP t  at time t to the 

price  kP s  at time s: 

     ,k k kJ t s P t P s . (1) 
In the case when the time point s is taken as the initial 

time point 0t  , the corresponding price index is called the 
base price index. Two main properties of base indices follow 
from the definition: 

1) Reversibility: for any time instants t and s the equality 
holds: 

   , 1 ,k kJ t s J t s . (2) 
Obviously, as follows from (2), for any t the equality holds 

 , 1kJ t t  . 
2) Transitivity: if 1 2, ,..., mt t t  are arbitrary moments of time, 

then the following relation holds: 
       1 2 1 3 2 1, , , ... ,k m k k k m mJ t t J t t J t t J t t     . (3) 

Let us now turn to the consideration of the rate of change 
of the price  ki t  of product k at time t. The rate of change 
of the price of product k for the period from time t to time 
t    is called the quantity 

       ,k k k ki t t P t P t P t         .   (4) 
Dividing the numerator and denominator of the right-

hand side of expression (4) by  kP s , taking into account (1), w 
e obtain that for a given base time s, the value of the rate of 
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change in the price of product k for the period from time t to 
time can be written in the following form: 

       , , , ,k k ki t s J t s t s J t s          . (4а) 
Expression (4a) is convenient because the price indices 

in it are reduced to a common base time point s. To obtain 
the rate of change of the price of product k at time point t, in 
(4a) we perform a limit transition by 0  : 

       
0

, lim , , ,k k k ki t s J t s J t s J t s


          

 
   ,1 ln , .

,
k

k
k

J t s
J t s

J t s t t
 

  
 

 (5) 

As follows from formula (1), the right-hand sides of 
formulas (4a) and (5) do not really depend on the base time 
s. The main question is under what conditions the rate of 
price change  ,ki t s  will depend only on the current time t 
and will not depend on the base time s. The answer is given 
by the following statement. 

If for any step m the price index (hereinafter also the 
inflation index)  ,kJ t s  satisfies the transitivity condition (3), 

then the quantity  ,ki t s  does not depend on s. Then the 

correct notation is  ki t . And, conversely, if  ,ki t s  does not 

depend on s and it is known that for  ,kJ t s  (not necessarily 

given by formula (1)) the condition  , 1kJ t t   is fulfilled, then 

satisfies  ,kJ t s  the transitivity condition (3) (for a proof of 
these statements by induction (Vilenskyi, Lyvshits, & 
Smolyak, 2011)). 

Thus, for a price index defined in accordance with 
formula (1) (or for any other inflation indices that satisfy 
condition (3)), the rate of price change, as well as the 
inflation rate, is calculated by the formula 

   
 ,1 .

,
k

k
k

J t s
i t

J t s t





                              (6) 

The dimension of the rate of price change is 1/unit of time 
or %/unit of time (for example, % per year or % per month). 
Equation (6) is rewritten as follows: 

     ,0 ,0k k kJ t t i t J t   . (7) 

Being interested in the change in the price index  ,0kJ t  

of the k-th product over a finite time interval  0,T , we 
introduce the relative time t T  . As a result, equation (7) 
is rewritten as 

     k k kJ i TJ      , (8) 

where    ,0k kJ J   . Assuming that the price of some k-
th good during inflation can both increase and decrease, 
equation (8) is generalized to the following: 

         k k kJ i TJ        . (8а) 

Adding to it the initial condition    0 1kJ
  , we proceed 

to the following Cauchy problem: 
         k k kJ J        ,    0 1kJ

  , (9) 

where    k ki T     is the dimensionless rate of change in 

the price of the k-th product over the time interval  0,T . 
Solving problem (9) using the separation of variables 
method, we obtain the exponential growth (decrease) of the 
price index    kJ

   depending on the relative time  : 

     expk kJ d         .  (10) 

It is obvious that at   0k    from (10) we obtain 
    1kJ
   , i.e. we have the case of a constant price of the 

k-th good (no inflation). If   constk k ki T      , then from 
(10) we obtain 

     expk kJ      , (11) 
that is, we have an exponential nature of the increase 
(decrease) in the price of the k-th good. Other functions 

 k   can be taken if the rate of change itself changes in 
the process of inflation. However, there is another approach 
to the analysis of inflationary processes, which is based on 
the use of fractional derivatives (Caputo, & Mainardi, 1971; 
Samko, Kilbas, & Marichev, 1993; Kilbas, Srivastava, & 
Trujillo, 2006). In particular, in the future we will analyze 
various inflationary processes using differential equations 
with fractional derivatives (Caputo, & Mainardi, 1971; Kilbas, 
Srivastava, & Trujillo, 2006). 

So, using the definition and properties of the consumer 
price index as one of the main indicators of the inflation 
process, and the justification of partial differential equations 
(8), (8a), and their solutions (10), (11), we proceed to the 
following generalization. 

Consideration of inflationary processes using 
differential equations with fractional derivatives. 
Assuming that  k k    , from equations (8) and (8a) we 
proceed to the following differential equations with fractional 
derivatives: 

   k k kJ J       ,   (12) 
       k k kJ J        , (12а) 

where 1 , 1,2,...n n n      (note that by changing the 

exponent of the fractional derivative  , as will be shown 
below, we can describe different inflation rates). Note also 
that as a fractional derivative     we will consider the 
left-hand fractional derivative of Caputo (Caputo, & 
Mainardi, 1971; Kilbas, Srivastava, & Trujillo, 2006): 

         11 n nС
a a
D f t f t dt

n
      

     

 
   

   1

0

0
1

k
n kR

a k

f
D f a

k
 


    
    ,        (13) 

where is the fractional Riemann – Liouville derivative 
(Kilbas, Srivastava, & Trujillo, 2006). 

Results 
Therefore, using (13) at 0a   equation (12a) is rewritten 

as follows: 
       0 0С
k k kD J J      , 

 0; 1 ; ; kn n n          .  (14) 
Let's move on to analyzing the solutions of this fractional 

differential equation. In the case 0 1    the solution to 
equation (14) under the initial condition, as in equation (9), 
is the following function (Kilbas, Srivastava, & Trujillo, 2006): 

     ,1k kJ E 
    , (15) 

where    , 0
k

k
E x x k

  
        is the Mittag – Leffler 

function (Samko, Kilbas, & Marichev, 1993; Kilbas, Srivastava, 
& Trujillo, 2006). Appendix A discusses in detail the algorithm 
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for solving equations of type (14). It is obvious that at 1   the 
solution (15) will coincide with the function (11). Such functions 
of price indices for products with different inflation (deflation) 
rates are convenient for describing the processes of moderate 
(creeping) inflation (deflation). 

In Fig. 1a, b, respectively, on finite time intervals 
0 1    and 0 10    plots  of the price index function are 
plotted, respectively, for the following values of the 
dimensionless rate of change in the price of the k-th product 
and the indices  of the fractional derivative: 0, 0.1k T   , 

1,0.9,0.7,0.5   
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0 

 а b  
Fig. 1. Plots of the price index functions    kJ

   of the k-th product at 0 1    a), 0 10    (b)   

for the cases 0k   – line 0; 1   – curves 1, 1; 0.9  – curves 2, 2; 0.7   – curves 3, 3, 0.5   – curves 4, 4 
 

From Fig. 1a it is seen that for curves with smaller values 
of the indicator   to some values of times   price indices 
will be higher than for curves with larger values of  . Then 
an inverse situation arises, when with lower indicators   
there will be lower price indicators. As can be seen from 
Fig. 1b, this trend does not change even with further growth 
values of  . It is obvious that here the nonlinear behavior of 
price indices (for example, for a specific product k) with 
changes in the inflation rate is manifested. For deflationary 
processes, as can be seen from Fig. 1a, b, the situation will 
be almost mirror-image for small values of   and is strongly 
disturbed with increasing values of  . 

In the case 1 2    under initial conditions    0 1kJ
   

and    0k kJ      the solution to equation (14) is written 
in the following form (Kilbas, Srivastava, & Trujillo, 2006): 

       ,1 ,2k k k kJ E E  
          . (16) 

In Fig. 2a, plots of price index functions    kJ
   are 

plotted over a time interval 0 1    for the same value k  
and for the values of 1,1.3,1.5,1.7  . In Fig. 2b plots of the 

price index function    kJ
   for the same k  and   are 

plotted over a time interval 0 10    (these functions 
   kJ
   are examined separately below). 
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Fig. 2. Plots of the price index functions    kJ

   of the k-th product at 0 1     (a), 0 10     (b) for the cases 0k   – line 0; 1   

– curves 1, 1; 1.3   – curves 2, 2; 1.5   – curves 3, 3, 1.7   – curves 4, 4 
 

As can be seen from Fig. 2a, the curves    kJ
   with 

1 2    pass above the curve with 1   (in the case of 
inflation), and the curves    kJ

   with 1 2    pass below 

the curve with 1   (in the case of deflation). In this case, 
the behavior of the curves is similar to the behavior of the 
curves in Fig. 1a, namely, the curves with smaller values of 
  are initially located above the curves with larger values 
of  , and then they change places, which is a manifestation 
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of the non-linearity of the functions (16). Note that using the 
function    kJ

   processes with galloping inflation can be 

described (see Fig. 2b), and using the function    kJ
   

processes with galloping deflation can be described. 
To describe hyperinflation we use the solutions of 

equation (14) at 2 3    and under initial conditions 
   0 1kJ
  ,    0k kJ      and    2 2 20k kJ      (Kilbas, 

Srivastava, & Trujillo, 2006): 
         2 2

,1 ,2 ,3k k k k k kJ E E E   
                .    (17) 

Fig. 3 plots the function (17) for different values of the 
fractional derivative exponent (it is seen that with a change 
in the value of α in the interval, the function    kJ

   
increases sharply over time). 

Finally, in Fig. 4a, b plots of the function    kJ
   are 

plotted for those values of   that were chosen, respectively, 
when constructing the function    kJ

   in Fig. 2b, Fig. 3 
(in Fig. 4a, the time interval 0 50    was chosen, and in 
Fig. 4b, the time interval 0 10    was chosen, 

respectively). In addition, these figures show lines that occur 
when 0k  . 

 

 

   kJ
   

  

1 

2

4 

300 

400 

200 

100 

500 

10 0 5 
 

Fig. 3. Plots of the price index functions    kJ
    

of the k-th product over a time interval 0 10    for the 
cases 2.1   – curve 1, 2.5   – curve 2, 2.9   – curve 3 
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Fig. 4. Plots of the price index functions    kJ

   of the k-th product: (a) – at 0 50    for 1,1.3,1.5,1.7   (curves 1, 2, 3, 4); 

 (b) – at 0 10    for 1,2.1,2.5,2.9   (curves 1, 2, 3, 4); at 0k   – line 0 
 

Questions arise: how to understand a negative price 
index    kJ

  ? Are such situations possible? Oddly enough, 
the answers to these questions can be positive. In this case, 
we can say that we are dealing with donations, charity, free 
assistance, etc. 

From Fig. 4a, it can also be seen that in the case of 
galloping deflation, when moving from smaller values of α 
to larger ones, the change in the price index    kJ

   
acquires an increasingly pronounced damped oscillatory 
character. At the same time, this entire oscillatory process 
in the time interval 0 50    occurs at values     1kJ

    
(curves 2 and 3, as can be seen from Fig. 4a, are mainly 
in the negative region). 

Another trend, as can be seen from Fig. 4b, occurs in 
the case of hyperdeflation, when 2 3   . In this case, 
when moving from smaller values of � to larger ones, the 
price index    kJ

   with the change in   reaches an 

increasingly smaller negative value. Then as   increases 
this index crosses both the abscissa axis and the 

dependence     1kJ
   , and then it goes steeper and 

steeper towards infinity. This means that hyperdeflation 
transforms into hyperinflation. 

Consideration of the relationship between inflation and 
unemployment over finite time periods using fractional 
differential equations. Let us now consider the relationship 
between inflation and the unemployment rate over finite time 
periods by analyzing solutions of differential equations with 
fractional derivatives for different values of the indicator  . As 
is known from the literature (Lester, 2023; Ferraris, 2025), in 
short-term periods, the relationship between the inflation rate i 
and the unemployment rate b is described by the Phillips curve. 
This dependence i(b) demonstrates that as the unemployment 
rate decreases, the inflation rate increases, i.e., by reducing 
unemployment, we "pay" with an increase in inflation. Note that 
the unemployment rate is calculated as the ratio of the number 
of unemployed people upN  registered with the state 
employment service to the number of working-age population 

wpN , i.e. up wpb N N . We also note that the unemployment 
rate b should generally be much less than unity. However, 
theoretically, we can also consider situations where the 
parameter b can reach arbitrary positive values. 
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It is easy to see from the previous analysis that the 
simplest Cauchy problem describing such a relationship 
between inflation and the unemployment rate would be: 

   i b
i b

b


 


,   00i i ,  (18) 

where the dimensionless quantity   characterizes the rate 
of change in the inflation rate with an increase in the 
unemployment rate, 0i  is inflation in the absence of 
unemployment. Solving this equation, we obtain 
   0 expi b i b  . Equation (18) can be generalized by 

moving on to the following differential equation with 
fractional Caputo derivative: 

   0 0D i b i b    . (19) 
Using expressions (15)–(17), the solutions of equation (19), 

for example, for the values 10 1   , 21 2   , 32 3    
are written in the following form: 

   1

11 0 ,1i b i E b  .  (20a) 

     2 2

2 22 0 ,1 ,2i b i E b bE b 
 

      . (20b) 

       3 3 3

3 3 3

2 2
3 0 ,1 ,2 ,3i b i E b bE b b E b  

  
        . (20c) 

In Fig. 5 plots of functions (20a, b, c) are plotted, for 
example, for the following numerical values: 0 0.1i   in the 

time interval  0,T , 1  , 1 0.5  , 2 1.5  , 3 2.5  . 
As can be seen from Fig. 5, in addition to curve 1, which 

corresponds to the Phillips curve (Mankiv, 2000), other 
relationships between inflation and the unemployment rate 
are also possible. In particular, in the case of moderate 
inflation (curve 2), disinflation is higher for small values of  
b than for 1  , and, on the contrary, it is lower with 
increasing unemployment. 

In the case of galloping inflation (for example, curve 3 in 
Fig. 5), the function і(b) at a certain unemployment level b0 
reaches a zero value and then, with the increase of b after 
reaching the minimum value, changes in a weakly oscillating 
manner in the negative region of its values. Here, an urgent 
question arises: what do negative values of the inflation rate 

mean? As above, when explaining a negative price index, 
negative values of the function і(b) occur in cases of 
charitable activities, free assistance, donations, etc. 
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Fig. 5. Plots of the inflation rate function і(b) at 1    

and for the following values of  : 1 – curve 1, 0.5 – curve 2,  
1.5 – curve 3, 2.5 – curve 4 

 
 

Finally, in the case of hyperinflation, the function і(b) (for 
example, curve 4 in Fig. 5) oscillates with increasing 
amplitude. Thus, as follows from this study, in addition to the 
traditional monotonic dependence (curve 1) between the 
unemployment rate and the inflation rate, mathematically 
admissible and significantly non-monotonic dependences 
(curves 2, 3, 4) are also significant. Obviously, detailed 
sociological studies are needed to confirm these non-trivial 
theoretical results. 

It is also interesting to investigate the dependence of the 
inflation rate functions on the rate of change of the inflation 
rate for some specific values of unemployment levels. Thus, 
in Fig. 6a, b for the same values of   as in Fig. 5, graphs of 
the function  i   are plotted for the following unemployment 
levels: b = 0.1 (see Fig. 6a) and b = 0.5 (see Fig. 6b). 

 
Fig. 6. Plots of the inflation rate function  i   for unemployment levels b = 0.1 – (a), b = 0.5 – (b)  

and for the following values of  : 1 – curves 1, 0.5 – curves 2, 1.5 – curves 3, 2.5 – curves 4 
 

From Fig. 6a, b it is seen that the inflation rate function 
 i   at 1   is characterized by strong non-monotonicity 

with increasing inflation rate change rate. It is seen that with 
increasing unemployment rate, minimum inflation rates are 
reached at lower inflation rate change rates. In the case of 
hyperinflation, these rates are the lowest. 

Discussion and conclusions 
Based on the use of differential equations with fractional 

derivatives (in particular, with Caputo derivatives), the work 
investigated changes in the price index, for example, of 
some k-th commodity (product) at different time intervals. It 
was shown that when the index α of the fractional derivative 
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changes, using one fairly simple differential equation, it is 
possible to describe in a universal way changes in the price 
index under the influence of different rates of inflation 
processes, namely, under conditions of moderate, galloping, 
and hyperinflation. In addition, using this equation, the work 
also describes deflationary processes at different rates. At 
the same time, the non-trivial behavior of the obtained 
solutions may lead over time to the appearance of negative 
values of price indices (the latter can be explained by the 
presence of external influences). 

Using the same differential equation, one can study the 
dependence of inflation rates on the unemployment rate at 
constant rates of change in inflation rates, as well as the 
dependence of inflation rates on the rates of change in inflation 
rates at constant inflation levels. It was shown that in addition to 
the classical Phillips dependence, which is realized at 1  , 
solutions of the corresponding differential equations with 
fractional exponents α can give radically different results, which 
open up prospects for more detailed studies. 

Of course, an important point in the study of inflationary 
processes using differentials with fractional derivatives is the 
testing of the appropriate methods. Thus, using solutions of 
differential equations with fractional Caputo derivatives, it is 
possible to simulate changes in the prices of the main 
ingredients of the “borscht set” and changes in its average 
cost under conditions of moderate inflation. For this purpose, 
the possibility of continuously changing the parameters 
(in the region 1 2   ) and   is used to reflect almost 
periodic changes in inflationary and deflationary periods 
against the background of general growth. It should be noted 
that similar dependencies are also found in the work 
(Lemishovskyi, & Dumych, 2024). It should be noted that for 
dependencies that describe hyperinflation (see, for 
example, the work (Tamimi, & Orbán, 2020), the parameters 
2 3    and   are easily selected. 

Thus, the use of differential equations with fractional 
derivatives allows for more flexible modeling of complex 
inflation processes, which, as noted above, is also related to 
memory effects. In addition, analyzing on the basis of only one 
equation (with a change only in the order of the fractional 
derivative and initial conditions) simplifies the work. 

The obtained mathematical relationships have the 
following interpretation: 

1) the transition from lower to higher values of the order 
of the derivative corresponds to an acceleration of the 
inflation rate; 

2) negative values of price indices in the solutions can 
be interpreted as a consequence of overproduction or 
changes in external conditions; 

3) non-trivial relationships between inflation and 
unemployment demonstrate the possibility of both classical 
Phillips behavior and much more complex scenarios that 
require additional checks; 

4) the model can describe the patterns of price 
fluctuations even under conditions of a variable inflation rate. 

The practical significance of the results obtained lies in 
the possibility of: 

1) building flexible tools for forecasting inflationary and 
deflationary processes; 

2) operational monitoring of price indices (for example, for 
a set of basic food products) in different inflationary regimes; 

3) adapting model parameters to specific economic 
conditions to take into account the influence of external 
factors (for example, the monetary policy of governments). 

Finally, we note that fractional integro-differentiation is 
increasingly finding its application in various fields of natural 
science. In particular, in the study of the scattering 
processes of charged particles that are channeled in 
crystalline media (Maksyuta, Koshcheev, & Panina, 2012). 
Interesting results were also obtained when using fractional 
equations to consider the inflationary theory of the origin of 
our Universe (Rasoulia et al., 2023). 

This is a consequence of the natural process of 
development/complication of the mathematical apparatus, 
which is required for a more detailed description of 
complex phenomena. And complex economic phenomena 
are no exception. 

 
Appendix A 

 
Using the left-sided fractional Caputo derivative (see formula 

(13)), we will find the solution to the differential equation 
     0 0 0; 1 ; ;C D y t y t t n n n             (A1) 

using the following integral Laplace transform:using the following 
integral Laplace transform: 

          
0

expy s y t s y t st dt


      L L .        (А2) 

Using (A2), the Laplace transform of the fractional Riemann – 
Liouville derivative has the following form: 

       0 00
expRD y t s st D y t dt

 
       L  

     
  10 0

1 exp .
n t

nn

y z dzdst dt
n dt t z



 

 
   
     

   (А3) 

After integrating by parts n times, expression (A3) will be written 
as follows: 

     
   
 0 10 0

expn tR
n

st y z dzsD y t s dt
n t z


  


        L .    

(А4) 
Using the well-known Dirichlet formula  

   , ,
b x b b

a a a y
dx f x y dy dy f x y dx     

and moving to a new variable w t z  , we continue with the 
following transformations: 

         
 

     

0 10

10 0

exp

exp

n
R

nz

n

n

st dtsD y t s y z dz
n t z

s z w dws y z dz
n w

 
  

 

 


        

    
  

 

 

L
 

       

       

1

0 0

1

0 0

exp exp

,
exp exp

n
n

n
n

s y z sz dz sw w dw
n

sw x w x s s y z sz dz x x dx
dw dx s n

  

  

   
 

 
    

  

 

 
 

      
0

exps y z sz dz s y s
    L .           (А5) 

We now find the Laplace transform of the second term in 
formula (13) under the condition 0a  : 

   
   

   
   

1

0

1

0 0

0
1

,0
exp

1

k
n k
k

k
n k
k

y
t s

k

st x t x sy
st t dt

dt dx sk

 


 


 
 

     

 
  

   



 

L
 

   
       

1
1 1 1
0 00

0
exp 0

1

k k
n n kk k
k k

y s
x x dx y s

k

 
   

 
  

    .(А6) 
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Therefore, subtracting expression (A6) from expression (A5), 
we arrive at the following Laplace transform of the fractional Caputo 
derivative 

        1 1
0 0

nC j
jj

D y t s s y t s d s   
 

        L L ,   (А7) 

where    0j
jd y ,  0,..., 1j n  . Now applying (A2) and (A7) 

to equation (A1), we obtain 

   
1

1

0

j
n

jj

sy t s d
s

 



     L .     (А8) 

On the other hand, it is easy to show that the following formula 
holds: 

     
1

, 1 1
j

j
j

st E t s s
s

 
 

  
       
L .  (А9) 

Let's prove this formula: 

       , 10
expj

j jy t s t E t st dt
 

        L  

   0 0
exp

1

k
k j

k
t st dt

k j
  




 

     .         (А10) 

Further performing a linear substitution st х   in the integral of 
formula (A10), we obtain 

 
0

,
expk j x st t x s

t st dt
dt dx s

    
  

  

   
1 10

11 expk j
k j k j

k j
x x dx

s s
  

     

   
   . (А11) 

Substituting (A11) into (A10), we obtain 

     1 0

1 k

j j k
y t s s

s
 

 
     L .  (А12) 

From formula (A12) it is clear that the power series present in it 
is a geometric progression with denominator q s  . It is obvious 

that under the condition 1s   we have 

 0

1
1

k

k

ss
s s


 

 
  

    .  (А13) 

So, after substituting (A13) into formula (A12) under the 
condition 1s   we arrive at formula (A9). Thus, from relations 

(A8) and (A9) it follows that the solution of equation (A1) is 
represented in the following form: 

   1

0

n
j jj

y t d y t


  ,                          (А14) 

where    , 1
j

j jy t t E t   ,  0,..., 1j n   is the fundamental 

system of solutions of equation (A1). 
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МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ІНФЛЯЦІЙНИХ ПРОЦЕСІВ В ЕКОНОМІЦІ  
ЗА ДОПОМОГОЮ ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ ІЗ ДРОБОВИМИ ПОХІДНИМИ  

 
В с т у п .  Під час вивчення швидкозмінних інфляційних процесів в економіці часто використовують теоретичні методи, засновані на 

звичайних диференціальних рівняннях або диференціальних рівняннях із частинними похідними. Однак, як показано в цій статті, у певних 
випадках доцільніше застосовувати апарат диференціальних рівнянь із дробовими похідними. Це пов'язано з наявністю різних типів 
нелінійностей у функціональних зв'язках у межах інфляційних процесів, впливом значень параметрів із попередніх моментів часу на поточні 
значення, існуванням співвідношень масштабування тощо. Фактично, всі ці характеристики притаманні дробовому численню. 

М е т о д и . Статтю присвячено застосуванню диференціальних рівнянь із дробовими похідними Капуто для аналізу інфляційних 
(дефляційних) процесів в економіці, базуючись на методі вимірювання інфляції з використанням індексу споживчих цін, який враховує 
зміни у цінах на певний набір товарів і послуг. Це продемонстровано на змінах зазначеного індексу на скінченних часових відрізках. 

Р е з у л ь т а т и .  Показано, що використання диференціальних рівнянь дробового порядку може бути корисним для побудови 
гнучких інструментів прогнозування процесів інфляції / дефляції. Також досліджено зв'язок між рівнем інфляції та рівнем безробіття. 

В и с н о в к и .  Встановлено, що зміна індексу дробової похідної в теоретичних моделях економічних процесів дозволяє описувати 
різні режими цінової динаміки – від помірної інфляції до галопуючої та гіперінфляції, а також складні дефляційні сценарії. Поява від'ємних 
значень індексів цін на окремі товари може бути інтерпретована як наслідок їх надлишкового виробництва, що призводить до втрати 
ринкової вартості. Запропонований метод використання диференціальних рівнянь із дробовими значеннями порядку похідних 
забезпечує розширення можливостей моделювання широкого спектра економічних процесів. 

 
К л ю ч о в і  с л о в а :  інфляційні (дефляційні) процеси в економіці, індекс цін, темпи зміни цін, рівень безробіття, дробові похідні 

Капуто та диференціальні рівняння із цими похідними. 
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