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MATHEMATICAL MODELING OF INFLATION PROCESSES
IN THE ECONOMY USING DIFFERENTIAL EQUATIONS WITH FRACTIONAL DERIVATIVES

Background. When studying rapidly changing inflationary processes in economics, theoretical methods based on
ordinary differential equations or partial differential equations are often used. However, as demonstrated in this paper, in certain
cases it is more appropriate to use the apparatus of differential equations with fractional derivatives. This is due to the presence
of various types of nonlinearities in functional relationships within inflationary processes, the influence of parameter values from
previous time points on current values, the existence of scaling relations, and so on. In fact, all these characteristics are inherent
to fractional calculus.

Methods. The article is devoted to the application of differential equations with fractional derivatives of Caputo for the
analysis of inflationary (deflationary) processes in the economy, based on the method of measuring inflation using the consumer
price index, which takes into account changes in prices for a certain set of goods and services. This is demonstrated by changes
in the specified index over finite time periods.

Results. Itis shown that the use of fractional order differential equations can be useful for building flexible tools for forecasting
inflation/deflation processes. The relationship between the inflation rate and the unemployment rate is also investigated.

Conclusions. Ithas been established that the change in the fractional derivative index in theoretical models of economic
processes allows describing different regimes of price dynamics — from moderate inflation to galloping and hyperinflation, as well
as complex deflationary scenarios. The appearance of negative values of price indices for individual goods can be interpreted as
a consequence of their excess production, which leads to a loss of market value. The proposed method of using differential
equations with fractional values of the order of derivatives provides an expansion of the possibilities of modeling a wide range of
economic processes.

Keywords: inflationary (deflationary) processes in the economy, price index, rate of price change, unemployment rate,

Caputo's fractional derivatives, and differential equations with these derivatives.

Background

In the modern economic environment, one of the key
problems is inflation (Bossone, 2019; Dinh, 2020; Conrad,
2022; Lester, 2023; Afrouzi, 2024; Dibyendu, & Chandra,
2025; Ferraris, 2025). This phenomenon reflects the growth
of the general level of prices for goods and services, which
has a significant impact on the stability of financial systems
and the socio-economic development of countries as a
whole. The growth of prices and its consequences, such as
the decline in the standard of living of the population and the
deterioration of the macroeconomic situation, become the
object of in-depth analysis and the search for optimal
management strategies.

Researchers and practitioners draw attention to the
importance of developing new methods and analytical tools
for analyzing and forecasting inflationary phenomena. The
relationship between inflation (deflation) and
unemployment, and other economic indicators, is becoming
a relevant task for economic science and practice.

The paper aims to achieve a more realistic and adaptive
modeling of various types of inflationary processes using
differential equations with fractional Caputo derivatives.

Literature review. The complex processes of inflation
require the construction of various mathematical models for
a deeper understanding. These models make it possible to

predict such processes and to influence them through their
interconnections with various economic and political
decisions. For instance, in (Moza, Brandibur, & Gaina,
2023), the relationship between interest rates, investment
demand, and the inflation rate is studied using a four-
dimensional model that describes these interactions by
applying a control law to the interest rate. In (Ifeacho, &
Gonzalez-Parra, 2025), a mathematical model is proposed
based on a system of first-order nonlinear differential
equations, developed to study the impact of corruption,
unemployment, and inflation on economic growth (it also
considers numerical simulations where periodic solutions
arise due to Hopf bifurcation). In works (Tsoularis, 2021;
Navarro, & Tomé, 2022), economic models are also
analyzed using ordinary differential equations, often
allowing for single-factor approximations.

However, when modeling multifactor processes (for
example, in the Black-Scholes model for option pricing),
describing the dynamics of economic processes and
systems (for example, in the analysis of inflationary
processes in the economy), the possibility of describing
optimal solutions, etc., partial differential equations provide
greater flexibility, multidimensionality, and accuracy of
approaches to mathematical modeling (see Alam, 2020;
Neumann, 2022; Ashish, 2025; Kubba, & Abdou, 2025).
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In particular, in recent years, differential equations with
fractional derivatives have been increasingly used in
economics (see, for example, (Dgbrowski, Janus, & Mucha,
2025; Saeidi, Hejazi, & Mohammadi, 2024; Tarasova, &
Tarasov, 2017; Luo, Wang, & Feckan, 2018; Ming, Wang, &
Fe¢kan, 2019; Tarasov, 2020a, 2020b; Awa, 2020;
Muhamad et al., 2021; Badi'k, & Feckan, 2021; Cheow et al.,
2024; Kocapor, Valério, & Radonji¢, 2025)). Unlike ordinary
differential equations and partial differential equations,
fractional equations allow for modeling processes that take
memory effects into account (for instance, in financial
markets, prices are influenced not only by current news but
also by previous trends and expectations). Fractional
differential equations provide a smoother transition between
linear and nonlinear growth, between stability and instability,
which is important for modeling complex economic systems
with many interdependent factors. Models with fractional
derivatives tend to align better with empirical data than those
based on conventional derivatives. Fractional derivatives
also account for anomalous diffusion and time delays, which
are crucial for adapting to economic situations with
nonstandard dynamics — such as crises or long-term cycles.
Since the economy encompasses various time scales —
short-term fluctuations, medium-term cycles, and long-term
trends — it makes sense to use fractional differential
equations, as they can simultaneously account for the
influence of all these scales. It should be noted that the order
of a fractional derivative can be an arbitrary real number
(and even an arbitrary complex number or a complex-valued
function of a complex variable), which provides greater
flexibility in tailoring models to specific problems. In this
work, it will be shown that by varying the order of a Caputo-
type fractional derivative, it is possible to describe different
types of inflation in a unified manner. Finally, fractional
equations naturally reflect so-called scaling properties, as
they exhibit a self-similar (fractal) structure. Solutions to
fractional equations often involve functions of the Mittag-
Leffler type, which are characteristic of power-law
distributions (for example, income distributions, company
sizes, and price fluctuations).

In the works (Luo, Wang, & Feckan, 2018; Ming, Wang,
& Feckan, 2019; Tarasov, 2020a, 2020b; Kocapor, Valério,
& Radoniji¢, 2025), when analyzing statistical data on
economic growth, respectively, in Spain, China, and Serbia,
it was shown that the use of the fractional Caputo derivative
leads to better results than when using derivatives of integer
orders. It is obvious that using differential equations with
fractional derivatives (in particular, the fractional Caputo
derivative), it is possible to model inflationary (deflationary)
processes, which we will briefly recall here.

Methods

A brief description of different types of inflation.
Inflation can be given a fairly concise and extremely
capacious definition: inflation — an increase in the general
(average) price level over time (Bossone, 2019; Dinh, 2020;
Conrad, 2022; Lester, 2023; Afrouzi, 2024; Dibyendu, &
Chandra, 2025; Ferraris, 2025).

According to the rate of price growth, there are three
types of inflation: moderate, galloping, and hyperinflation.

1) Moderate, or creeping, inflation occurs when prices in
the country grow by an average of up to 10% per year. This
type of inflation is considered safe, and when prices
increase by only a few percent, it is even desirable. A slight
increase in prices has a stimulating effect on economic
entities, so to speak, "whips up" their business activity. The
activation of demand, accordingly, stimulates production.
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2) Galloping inflation occurs when prices increase by
more than 10% per year (approximately 100 — 200%). This
type of inflation becomes dangerous because when prices
jump, people lose their composure, each time expecting
another price increase.

3) Hyperinflation (from the Greek hyper — above) — the
most dangerous type of inflation. During hyperinflation,
prices grow extremely quickly; they seem to explode,
reaching astronomical heights, for example, more than
1000% per year, or 50% per month, or 1% per day. This is
self-accelerating inflation.

It should also be noted that with inflationary processes
of price increases, there is a tendency to decrease prices
(general or for individual types of goods). This process is
called deflation. Deflation is caused by a shortage of money
compared to the production of goods. This leads to a
decrease in the rate of inflation — disinflation.

It is important to characterize the dynamics of the
considered inflationary processes, both in discrete and
continuous time, using the main quantitative characteristics
(price indices for various goods, rates of change of these
prices, the general core inflation index, the general inflation
rate, etc.), to which we proceed in detail.

Formulation of the Cauchy problem for the
consumer price index. One of the main indicators of
inflation is the consumer price index (CPI), which reflects
changes in prices for a certain set of goods and services
(Ferraris, 2025; Vilenskyi, Lyvshits, & Smolyak, 2011).
Based on this indicator, this article proposes a method for
studying inflation processes using fractional order
differential equations. However, before proceeding to the
direct description of this method, it is demonstrated here
how it is possible to first obtain an ordinary and fairly simple
partial differential equation based on the analysis of the price
index, and then make the transition to a fractional derivative
differential equation.

The price index J, (z,s) for a good k for the period from

time s to time t is the ratio of the price P, (¢) at time ¢ to the
price P,(s) attime s:

Ji(t.5)=F(1)/ B (s)- (1

In the case when the time point s is taken as the initial

time point =0, the corresponding price index is called the
base price index. Two main properties of base indices follow
from the definition:

1) Reversibility: for any time instants t and s the equality
holds:

J,{([,s)zl/Jk(t,s). (2)
Obviously, as follows from (2), for any ¢ the equality holds
J, (t,t)=1.
2) Transitivity: if ¢,,t,,...,¢, are arbitrary moments of time,
then the following relation holds:
Jo (b)) =T (t0,0) - T (1,15) - T (108, ) - (3)
Let us now turn to the consideration of the rate of change
of the price i, (¢) of product k at time t. The rate of change
of the price of product k for the period from time t to time
t+A is called the quantity
i (t+A.0)=[ B(t+A)-B(1)/R(t)A]. (4)
Dividing the numerator and denominator of the right-
hand side of expression (4) by P, (s) , taking into account (1), w

e obtain that for a given base time s, the value of the rate of
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change in the price of product k for the period from time ¢ to
time can be written in the following form:

ik(t+A,s)=[Jk(t+A,s)—(t,s)]/]k(t,s)A . (4a)

Expression (4a) is convenient because the price indices

in it are reduced to a common base time point s. To obtain
the rate of change of the price of product k at time point ¢, in

(4a) we perform a limit transition by A - 0:
i (t,s) = lim[Jk (t + A,S) -J, (t,s)]/Jk (t,S)A =

A0
oJ, (¢
_ 1 Mzﬁln% (.5). (5)
J (t.,s) o ot
As follows from formula (1), the right-hand sides of
formulas (4a) and (5) do not really depend on the base time
s. The main question is under what conditions the rate of

price change i, (¢,s) will depend only on the current time ¢

and will not depend on the base time s. The answer is given
by the following statement.

If for any step m the price index (hereinafter also the
inflation index) J, (¢,s) satisfies the transitivity condition (3),

then the quantity i, (¢,s) does not depend on s. Then the
correct notation is i, (¢) . And, conversely, if j (z,s) does not
depend on s and it is known that for J,(¢,s) (not necessarily
given by formula (1)) the condition J, (¢,) =1 is fulfilled, then
satisfies J, (¢,s) the transitivity condition (3) (for a proof of

these statements by induction (Vilenskyi, Lyvshits, &
Smolyak, 2011)).

Thus, for a price index defined in accordance with
formula (1) (or for any other inflation indices that satisfy
condition (3)), the rate of price change, as well as the
inflation rate, is calculated by the formula

i, ()= 1 8Jk(t,s).
J(t,s) ot

The dimension of the rate of price change is 1/unit of time
or %/unit of time (for example, % per year or % per month).
Equation (6) is rewritten as follows:

o, (1,0)/ot =i (¢)J,(,0). (7)
Being interested in the change in the price index J, (¢,0)

(6)

of the k-th product over a finite time interval [0,7], we

introduce the relative time t=¢/T . As a result, equation (7)
is rewritten as

aJ (v)or =i (v)TJ, (1), (8)
where J,(1,0)=J,(t) . Assuming that the price of some k-

th good during inflation can both increase and decrease,
equation (8) is generalized to the following:

Y (‘r)/@‘r =i, (‘E)TJF) (7). (8a)
Adding to it the initial condition JP(O) =1, we proceed

to the following Cauchy problem:
I (v)fon =11, (1) (x), I (0)=1, 9)
where %, (t)=i (1)7T is the dimensionless rate of change in
the price of the k-th product over the time interval [0,7].

Solving problem (9) using the separation of variables
method, we obtain the exponential growth (decrease) of the

price index J,Ei)(r) depending on the relative time t:
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J,Ei)(r):exp[ifkk(r)er . (10)
It is obvious that at A,(t)=0 from (10) we obtain

JP (1) =1, i.e. we have the case of a constant price of the
k-th good (no inflation). If A, (t)=const =T =4, , then from
(10) we obtain

J,(f)(t) =exp(+h,1), (11)
that is, we have an exponential nature of the increase
(decrease) in the price of the k-th good. Other functions
L. (t) can be taken if the rate of change itself changes in
the process of inflation. However, there is another approach
to the analysis of inflationary processes, which is based on
the use of fractional derivatives (Caputo, & Mainardi, 1971;
Samko, Kilbas, & Marichev, 1993; Kilbas, Srivastava, &
Trujillo, 2006). In particular, in the future we will analyze
various inflationary processes using differential equations
with fractional derivatives (Caputo, & Mainardi, 1971; Kilbas,
Srivastava, & Trujillo, 2006).

So, using the definition and properties of the consumer
price index as one of the main indicators of the inflation
process, and the justification of partial differential equations
(8), (8a), and their solutions (10), (11), we proceed to the
following generalization.

Consideration of inflationary processes using
differential equations with fractional derivatives.
Assuming that 1, (t)=2,, from equations (8) and (8a) we
proceed to the following differential equations with fractional
derivatives:

g, (v)/or" =0 J (1), (12)

oI (v) /o = 4,0 (1), (12a)

where n—-l<a<n, n=12,.. (note that by changing the
exponent of the fractional derivative o, as will be shown

below, we can describe different inflation rates). Note also
that as a fractional derivative 0“/6t* we will consider the

left-hand fractional derivative of Caputo (Caputo, &
Mainardi, 1971; Kilbas, Srivastava, & Trujillo, 2006):

‘Dif(r)= F(nl—u)J:(T_t)Hil SN (e =
_R na n-1 f(k)(o) k-o
= Daf(t)_Zk:om(t_a) , (13)

where is the fractional Riemann — Liouville derivative
(Kilbas, Srivastava, & Truijillo, 2006).
Results

Therefore, using (13) at « =0 equation (12a) is rewritten
as follows:
‘07 (1) F 1,7, (1) =0,
(t>0;n-1<a<mneN;%, eR). (14)
Let's move on to analyzing the solutions of this fractional
differential equation. In the case 0<a <1 the solution to

equation (14) under the initial condition, as in equation (9),
is the following function (Kilbas, Srivastava, & Truijillo, 2006):

(1) =E,, (1,7°), (15)

®©

where E,,(x)=Y" [x'/T'(ak+p)] is the Mittag - Leffler

function (Samko, Kilbas, & Marichev, 1993; Kilbas, Srivastava,
& Truijillo, 2006). Appendix A discusses in detail the algorithm
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for solving equations of type (14). It is obvious thatat a =1 the
solution (15) will coincide with the function (11). Such functions
of price indices for products with different inflation (deflation)
rates are convenient for describing the processes of moderate
(creeping) inflation (deflation).

1.10 (+

+)
Tk (T) /3
1.05 | z
1.00 € 0
NS
S
RENCE 1
NS
0.95 SSso
=
\\§t\\
Soy
0.90 - : 12’7 0
0 05 1

Fig. 1. Plots of the price index functions J,Et)

In Fig. 1a, b, respectively, on finite time intervals
0<1t<1 and 0<1<10 plots of the price index function are
plotted, respectively, for the following values of the
dimensionless rate of change in the price of the k-th product
and the indices ( of the fractional derivative: A, =0,+0.1T ,

a=1,0.9,0.7,0.5

[

(t) of the k-th productat 0<t<1 a), 0<t<10 (b)

for the cases A, =0 —line 0; aa=1 —curves 1,1; a.=0.9—curves 2,2'; o.=0.7 —curves 3, 3, a =0.5 —curves 4, 4'

From Fig. 1aitis seen that for curves with smaller values
of the indicator o to some values of times t price indices
will be higher than for curves with larger values of a . Then
an inverse situation arises, when with lower indicators o

there will be lower price indicators. As can be seen from
Fig. 1b, this trend does not change even with further growth
values of 1. It is obvious that here the nonlinear behavior of
price indices (for example, for a specific product k) with
changes in the inflation rate is manifested. For deflationary
processes, as can be seen from Fig. 1a, b, the situation will

be almost mirror-image for small values of t and is strongly
disturbed with increasing values of t.

In the case 1<a <2 under initial conditions J,(f)(o):l

and aJ{")(0)/av =+, the solution to equation (14) is written
in the following form (Kilbas, Srivastava, & Truijillo, 2006):
Jf)(r):Ea'l(ikkt")ikktEa’z(ikkt“). (16)
In Fig. 2a, plots of price index functions Jf)(r) are
plotted over a time interval 0<t<1 for the same value X,
and for the values of o =1,1.3,1.5,1.7 . In Fig. 2b plots of the
price index function J{*)(t) for the same %, and o are
0<t<10

Jﬁ(r) are examined separately below).

plotted over a time interval (these functions

(#) 25 -
T (9) I ()
1.2 20 -
2
1.1 L
3
1.0 fe=r 0 1o
SSas < )
0.9 | TSSsew T sy /
IS
2' \s\\\ e 1
0.0 . S~ 0 : ,3
0 0.5 1 0 5 10

a

b

Fig. 2. Plots of the price index functions Jf) (r) of the k-th productat 0<t<1 (a), 0<t<10 (b)forthecases A, =0 —line0; o =1

—curves1,1; a=1.3 —curves 2,2'; aa=1.5 —curves 3,3’, a=1.7 —curves 4, 4’

As can be seen from Fig. 2a, the curves J,E*)(r) with
l<a <2 pass above the curve with ao=1 (in the case of
inflation), and the curves Jf,’)(r) with 1<a <2 pass below
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the curve with a.=1 (in the case of deflation). In this case,
the behavior of the curves is similar to the behavior of the
curves in Fig. 1a, namely, the curves with smaller values of
o are initially located above the curves with larger values
of a , and then they change places, which is a manifestation
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of the non-linearity of the functions (16). Note that using the
function Jﬁ*)(r) processes with galloping inflation can be

described (see Fig. 2b), and using the function Jé’)(r)

processes with galloping deflation can be described.
To describe hyperinflation we use the solutions of
equation (14) at 2<a<3 and under initial conditions

JO0)=1, a17(0)/or =2, and &*J{7(0)/ov =A2 (Kilbas,
Srivastava, & Trujillo, 2006):
I (1) =E,, (M1®) + M1, , (M) + LT E, (A1) (17)

Fig. 3 plots the function (17) for different values of the
fractional derivative exponent (it is seen that with a change

in the value of a in the interval, the function J{"(7)
increases sharply over time).

Finally, in Fig. 4a, b plots of the function J\”(x) are
plotted for those values of o thatwere chosen, respectively,
when constructing the function J,E+)(T) in Fig. 2b, Fig. 3

(in Fig. 4a, the time interval 0<t<50 was chosen, and in

respectively). In addition, these figures show lines that occur
when A, =0.

500 1 (+)
i (1) 4
400 |
300 |
200 |
100 | )
T
0 5 10

Fig. 3. Plots of the price index functions J!") ()

of the k-th product over a time interval 0 <t <10 for the

cases oo =2.1 —curve1, a=2.5 —curve 2, a.=2.9 —curve 3

Fig. 4b, the time interval 0<1t<10 was chosen,
1.0 0 10
— k
A7)
0.5 1 101 4
1
4 5 ]
0.0 : ‘ , —
10 200 N_30———40 50
/ 0 o~ . / 1 ‘.?
05 2 W 7 10
a b

Fig. 4. Plots of the price index functions J,Ef) (‘t) of the k-th product: (@) —at 0 <1 <50 for o =1,1.3,1.5,1.7 (curves 1, 2,3, 4);

(b)-at 0<t<10 for @ =1,2.1,2.5,2.9 (curves1,2,3,4);at A, =0 —line 0

Questions arise: how to understand a negative price
index J{” (t) ? Are such situations possible? Oddly enough,

the answers to these questions can be positive. In this case,
we can say that we are dealing with donations, charity, free
assistance, etc.

From Fig. 4a, it can also be seen that in the case of
galloping deflation, when moving from smaller values of a

to larger ones, the change in the price index J,E’)(t)

acquires an increasingly pronounced damped oscillatory
character. At the same time, this entire oscillatory process

in the time interval 0<t<50 occurs at values J!”(1)<1

(curves 2 and 3, as can be seen from Fig. 4a, are mainly
in the negative region).

Another trend, as can be seen from Fig. 4b, occurs in
the case of hyperdeflation, when 2<a <3. In this case,
when moving from smaller values of [ to larger ones, the

price index J!)(t) with the change in t reaches an

increasingly smaller negative value. Then as t increases
this index crosses both the abscissa axis and the

ISSN 1728-3817

dependence Ji’)(r):l, and then it goes steeper and

steeper towards infinity. This means that hyperdeflation
transforms into hyperinflation.

Consideration of the relationship between inflation and
unemployment over finite time periods using fractional
differential equations. Let us now consider the relationship
between inflation and the unemployment rate over finite time
periods by analyzing solutions of differential equations with
fractional derivatives for different values of the indicator . As
is known from the literature (Lester, 2023; Ferraris, 2025), in
short-term periods, the relationship between the inflation rate
and the unemployment rate b is described by the Phillips curve.
This dependence i(b) demonstrates that as the unemployment
rate decreases, the inflation rate increases, i.e., by reducing
unemployment, we "pay" with an increase in inflation. Note that
the unemployment rate is calculated as the ratio of the number
of unemployed people N_ registered with the state

up
employment service to the number of working-age population
N,,.ie. b=N,/N, . We also note that the unemployment

wp
rate b should generally be much less than unity. However,
theoretically, we can also consider situations where the
parameter b can reach arbitrary positive values.



EKOHOMIKA. 1(228)/2026

~ 63~

It is easy to see from the previous analysis that the
simplest Cauchy problem describing such a relationship
between inflation and the unemployment rate would be:

0i(b) ) oy

% ——pz(b), 1(0)—10 ,
where the dimensionless quantity u characterizes the rate
of change in the inflation rate with an increase in the
unemployment rate, j, is inflation in the absence of
unemployment. Solving this equation, we obtain
i(b)=i,exp(—pb) . Equation (18) can be generalized by

(18)

moving on to the following differential equation with
fractional Caputo derivative:

Dyi(b)+pi(b)=0. (19)

Using expressions (15)—(17), the solutions of equation (19),

for example, for the values 0<a, <1, I<a, <2, 2<0a,<3
are written in the following form:

i (0)=i,E,,, (~nb™) .
b (b) =1 |:Ea2,1 (_Hbuz ) —WbE, , (_Hbuz ):| .

B(B) =iy B, o (~ub™ )~ pbE, ,(~ub™ )+ °E, ,(-u6" )] (200)
In Fig. 5 plots of functions (20a, b, c) are plotted, for
example, for the following numerical values: i, =0.1 in the

(20a)
(20b)

time interval [0,7], p=1, @, =05, a,=1.5, a,=2.5.

As can be seen from Fig. 5, in addition to curve 1, which
corresponds to the Phillips curve (Mankiv, 2000), other
relationships between inflation and the unemployment rate
are also possible. In particular, in the case of moderate
inflation (curve 2), disinflation is higher for small values of
b than for a=1, and, on the contrary, it is lower with
increasing unemployment.

In the case of galloping inflation (for example, curve 3 in
Fig. 5), the function i(b) at a certain unemployment level bo
reaches a zero value and then, with the increase of b after
reaching the minimum value, changes in a weakly oscillating
manner in the negative region of its values. Here, an urgent
question arises: what do negative values of the inflation rate

0.10 5

i{w)

0.00

mean? As above, when explaining a negative price index,
negative values of the function i(b) occur in cases of
charitable activities, free assistance, donations, etc.

0.3
0.2 |

0.1

\\ 2
0.0 1

-0.3 -

Fig. 5. Plots of the inflation rate function i(b) at p=1
and for the following values of o : 1 - curve 1, 0.5 — curve 2,
1.5-curve 3, 2.5 - curve 4

Finally, in the case of hyperinflation, the function i(b) (for
example, curve 4 in Fig.5) oscillates with increasing
amplitude. Thus, as follows from this study, in addition to the
traditional monotonic dependence (curve 1) between the
unemployment rate and the inflation rate, mathematically
admissible and significantly non-monotonic dependences
(curves 2, 3,4) are also significant. Obviously, detailed
sociological studies are needed to confirm these non-trivial
theoretical results.

It is also interesting to investigate the dependence of the
inflation rate functions on the rate of change of the inflation
rate for some specific values of unemployment levels. Thus,

in Fig. 6a, b for the same values of a as in Fig. 5, graphs of
the function i(p) are plotted for the following unemployment

levels: b = 0.1 (see Fig. 6a) and b = 0.5 (see Fig. 6b).

7i(m)

b

Fig. 6. Plots of the inflation rate function i(u) for unemployment levels b = 0.1 — (a), b= 0.5 — (b)

and for the following values of o : 1 - curves 1, 0.5 — curves 2, 1.5 — curves 3, 2.5 — curves 4

From Fig. 6a, b it is seen that the inflation rate function
i(p.) at a>1 is characterized by strong non-monotonicity
with increasing inflation rate change rate. It is seen that with
increasing unemployment rate, minimum inflation rates are

reached at lower inflation rate change rates. In the case of
hyperinflation, these rates are the lowest.
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Discussion and conclusions

Based on the use of differential equations with fractional
derivatives (in particular, with Caputo derivatives), the work
investigated changes in the price index, for example, of
some k-th commodity (product) at different time intervals. It
was shown that when the index a of the fractional derivative
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changes, using one fairly simple differential equation, it is
possible to describe in a universal way changes in the price
index under the influence of different rates of inflation
processes, namely, under conditions of moderate, galloping,
and hyperinflation. In addition, using this equation, the work
also describes deflationary processes at different rates. At
the same time, the non-trivial behavior of the obtained
solutions may lead over time to the appearance of negative
values of price indices (the latter can be explained by the
presence of external influences).

Using the same differential equation, one can study the
dependence of inflation rates on the unemployment rate at
constant rates of change in inflation rates, as well as the
dependence of inflation rates on the rates of change in inflation
rates at constant inflation levels. It was shown that in addition to
the classical Phillips dependence, which is realized at a =1,
solutions of the corresponding differential equations with
fractional exponents a can give radically different results, which
open up prospects for more detailed studies.

Of course, an important point in the study of inflationary
processes using differentials with fractional derivatives is the
testing of the appropriate methods. Thus, using solutions of
differential equations with fractional Caputo derivatives, it is
possible to simulate changes in the prices of the main
ingredients of the “borscht set” and changes in its average
cost under conditions of moderate inflation. For this purpose,
the possibility of continuously changing the parameters
(in the region 1<a<2) and A is used to reflect almost
periodic changes in inflationary and deflationary periods
against the background of general growth. It should be noted
that similar dependencies are also found in the work
(Lemishovskyi, & Dumych, 2024). It should be noted that for
dependencies that describe hyperinflation (see, for
example, the work (Tamimi, & Orban, 2020), the parameters
2<a <3 and A are easily selected.

Thus, the use of differential equations with fractional
derivatives allows for more flexible modeling of complex
inflation processes, which, as noted above, is also related to
memory effects. In addition, analyzing on the basis of only one
equation (with a change only in the order of the fractional
derivative and initial conditions) simplifies the work.

The obtained mathematical relationships have the
following interpretation:

1) the transition from lower to higher values of the order
of the derivative corresponds to an acceleration of the
inflation rate;

2) negative values of price indices in the solutions can
be interpreted as a consequence of overproduction or
changes in external conditions;

3) non-trivial relationships between inflation and
unemployment demonstrate the possibility of both classical
Phillips behavior and much more complex scenarios that
require additional checks;

4) the model can describe the patterns of price
fluctuations even under conditions of a variable inflation rate.

The practical significance of the results obtained lies in
the possibility of:

1) building flexible tools for forecasting inflationary and
deflationary processes;

2) operational monitoring of price indices (for example, for
a set of basic food products) in different inflationary regimes;

3) adapting model parameters to specific economic
conditions to take into account the influence of external
factors (for example, the monetary policy of governments).
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Finally, we note that fractional integro-differentiation is
increasingly finding its application in various fields of natural
science. In particular, in the study of the scattering
processes of charged particles that are channeled in
crystalline media (Maksyuta, Koshcheev, & Panina, 2012).
Interesting results were also obtained when using fractional
equations to consider the inflationary theory of the origin of
our Universe (Rasoulia et al., 2023).

This is a consequence of the natural process of
development/complication of the mathematical apparatus,
which is required for a more detailed description of
complex phenomena. And complex economic phenomena
are no exception.

Appendix A

Using the left-sided fractional Caputo derivative (see formula
(13)), we will find the solution to the differential equation

“Diy(t)-ay(t)=0 (t>0;n—1<a<mneN;LeR) (A1)
using the following integral Laplace transform:using the following
integral Laplace transform:

(£)(5) = £[r(0))() = [} v()exp(-s)ar. 42)
Using (A2), the Laplace transform of the fractional Riemann —
Liouville derivative has the following form:

.L[RD&y(t)J(s) = f: exp(—st) Dy, y(t)dt =

:ﬁ J.:exp(—st){j; J.(:(ty_(zz))f_]zm}dt. (A3)

After integrating by parts n times, expression (A3) will be written
as follows:

2[00 = gy o .

p(—st)y(z)dz _

( _Z)a—n 1
(A4)
Using the well-known Dirichlet formula

b X b b
J:l de:l f(x,y)dy = L dyjy f(x,y)dx
and moving to a new variable w=t¢-z, we continue with the
following transformations:
© ocexp(—st)dt _

L 00 0]6) =gk YL T
" " ® exp[—s(z + w)] dw
Tk O T e

= Sijmy(z) exp(—sz) dzj: exp(—sw) W dw=

F(n — (x) 0
_ SW;WX;ZXZ/:/S _ F(ns_ 3 J:Oy(z)exp(—sz) dZI:eXP(—x)x”’“"dx _
:S“j:y(z)eXp(_SZ)dZ:S“(.Ly)(s) - (A5)

We now find the Laplace transform of the second term in
formula (13) under the condition ¢ =0:

n-1 y(k)(o) k—a _
l{zkor(k_aﬂ)f (s)=
st=x,t=x/s
dt =dx/s

® }
> yi(o)'[; exp(—st)t**dt =

T (k—a+1)%
n—-1 y(k)(o)saikil

= zk:om

[ o) =5 05
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Therefore, subtracting expression (A6) from expression (A5),
we arrive at the following Laplace transform of the fractional Caputo
derivative

LLDyy(0)](s)=s"L[y(0)](s) =2 ds ", A7)
where d; = y(j)(O) . (j=0,..,n—1). Now applying (A2) and (A7)
to equation (A1), we obtain

a—j-1
Ly(0)](s)=X""d, :u,;@ (A8)

On the other hand, it is easy to show that the following formula
holds:

£[z~"Ea7/+l (M"‘)}(s) = ;q_“
Let's prove this formula:

L[y,(1)](s)= J:Ot»’Em_/.+1 (nt*)exp(-st)dt =

* ?\’k ® ak+j
:Zkzomjo 1% exp(~st)dt . (A10)

(‘s’”‘?x

< 1). (A9)

Further performing a linear substitution sz = x in the integral of
formula (A10), we obtain
xX=st,t=x/s

J:C 1" exp(—st)dt =

dt =dx/s
|, T(ok+j+1
= J'O x ’exp(fx)dx:% (A11)

Substituting (A11) into (A10), we obtain

1 w oK
£[yj(fﬂ(3)=s,ﬁzk:o(“ ) - (A12)
From formula (A12) it is clear that the power series present in it

is a geometric progression with denominator ¢ = As™* . It is obvious

that under the condition ‘Xs’“ <1 we have

w0 k 1 s®
AsTH) =——= . A13
Zk:O( ) I-As™™  s%=A "19)
So, after substituting (A13) into formula (A12) under the
condition ‘ks’“

<1 we arrive at formula (A9). Thus, from relations

(A8) and (A9) it follows that the solution of equation (A1) is
represented in the following form:

y(0)=2 0, (1), (A14)
(M“) . (j=0,..,n—1) is the fundamental

where y (1) =1'E,

o, j+1

system of solutions of equation (A1).
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KniBcbKkui HauioHanbHWiA yHiBepcuTeT iMeHi Tapaca LLlesuyeHka, Kuis, YkpaiHa

MATEMATUYHE MOAENIOBAHHSA IHONALINHMUX NPOLIECIB B EKOHOMILII
3A JONOMOIolo AU®EPEHUIANBHUX PIBHAHD 13 POBEOBUMU NOXIAHNMU

BcTyn. [lid yac eus4yeHHsi weudKo3MiHHUX iHGhAYilIHUX Npoyecie 8 eKOHOMIlUi Yacmo eukopucmoesyroms Mmeopemuy4Hi Memodu, 3acHoeaHi Ha
3euyaliHux OugbepeHyianbHUX pieHsHHSIX ab6o AugbepeHUianibHUX PI@HSIHHSX i3 YacMUuHHUMU roxiGHUMu. OOHak, sIK NMoka3aHo e yili cmammi, y nesHux
eunadkax douyinbHiwe 3acmocosyeamu anapam oJugbepeHuyianbHUX pieHsiHb i3 Opo6oeumu noxioHumu. Lle noe’asaHo 3 HasieHicmIo pi3HUX munie
HeniHiliHocmell y byHKUioHanbHUX 36's13kax y Mexax iHgnsayiliHux npouecie, enueomM 3HavyeHb napaMempie i3 nornepeoHix MOMeHMie 4Yacy Ha NMOmMoYHi
3HayeHHs1, icHyeaHHsIM cniesiOHoweHb MacwmabyeaHHsi mou,o. PakmuyHo, eci Ui xapakmepucmuku npumamMaHHi Gpo6080MY YUC/IEHHIO.

Me Toaun.Cmammio npucesiyeHo 3acmocysaHHI0 dughepeHyianbHUX pigHsiHb i3 dpobosumu noxiOHumu Kanymo dns aHanisy iHgnsayitHux
(OegpnsiyiliHux) npoyecie 8 ekoHomiyi, 6asyroHucbs Ha Memodi suMiprosaHHs1 iHGNAYIT 3 suKOpUCMaHHAM iHOeKcy crioxue4yux UiH, sikuli epaxoeye
3MiHU y yiHax Ha nesHull Habip moesapis i nocnye. Lje npodemoHcmposaHo Ha 3MiHax 3a3Ha4eH020 iHOeKCY Ha CKIH4eHHUX Yacoeux eidpi3Kax.

Pe3ynbTaTtu. [lokaszaHo, ujo eukopucmaHHsi dugepeHuyianbHUX pieHsiHb 0po608020 NMopsiIOKy Moxe 6ymu KopucHuM Onsi no6ydoeu
2HYYKUX iHCMpyMeHmie npoaHo3yeaHHs1 npoyecie iHgnayii / degpnsayii. Takox docridxeHO 38 'A30K MiX pieHeM iHgnAYiT ma pieHem 6e3pobimmsi.

BucHoBEKU. BcmaHoeneHo, wo 3mMiHa iHOekcy Opo6oeoi noxidHoi 8 meopemu4Hux Modersisix eKOHOMIYHUX npoyecie 0o3e0sIsie onucyeamu
Pi3Hi pexxumu yiHoeoi duHamiku — eid nomipHoi iHgnsiyii do 2anonyro4oi ma 2inepiHghnsayii, a makox cknadHi degpnsiyitiHi cyeHapii. lMosiea 8id‘eMHuUX
3HayeHb iHOeKcie UiH Ha okpeMi moeapu Moxxe 6ymu iHmeprnpemosaHa sik Hac/idok ix HaduwkKoeo20 eupobHuUYymea, wjo npuszeodums do empamu
PpuHKoeoi eapmocmi. 3anpornoHoeaHuli Memod eukKopucmaHHsi OdudgpepeHyianbHUX pieHsIHb i3 Opo608UMU 3HaYeHHSIMU MOPSIOKY MOXiGHUX
3abe3neyqye po3wWUupeHHsI MoXJlueocmeli MOOesT1l08aHHs1 WUPOKO20 criekmpa eKOHOMIYHUX rnpoyecie.

KnwuyoBi cnosBa: iHpnayilHi (Oegpnsyilivi) npoyecu e ekoHomiyi, iHOekc YiH, meMnu 3MiHU yiH, pieeHb 6e3pobimmsi, dpo6oei NoxioHi
Kanymo ma ducgpepeHuyianbHi pieHsIHHSA i3 yuMu noxiGHUMu.

ABTOpM 3a8BNSAIOTb NPO BiACYTHICTb KOHAMIKTY iHTepeciB. CnoHcopy He Gpanu y4acTi B po3po6neHHi AoCnimKeHHs; y 36opi, aHanisi un
iHTepnpeTauii AaHWX; Y HanMCaHHI pyKonucy; B pilleHHi Npo nybnikauito pe3ynbTaris.
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